Kalman Filtering with State Constraints
ثبت نشده
چکیده
The Kalman filter is the optimal minimum-variance state estimator for linear dynamic systems with Gaussian noise. In addition, the Kalman filter is the optimal linear state estimator for linear dynamic systems with non-Gaussian noise. For nonlinear systems various modifications of the Kalman filter (e.g., the extended Kalman filter, the unscented Kalman filter, and the particle filter) have been proposed as approximations to the optimal state estimator, which (in general) cannot be solved analytically. One reason that Kalman filtering is optimal for linear systems is that it uses all the available information about the system in order to obtain a state estimate.
منابع مشابه
On Line Electric Power Systems State Estimation Using Kalman Filtering (RESEARCH NOTE)
In this paper principles of extended Kalman filtering theory is developed and applied to simulated on-line electric power systems state estimation in order to trace the operating condition changes through the redundant and noisy measurements. Test results on IEEE 14 - bus test system are included. Three case systems are tried; through the comparing of their results, it is concluded that the pro...
متن کاملGPS/INS Integration for Vehicle Navigation based on INS Error Analysis in Kalman Filtering
The Global Positioning System (GPS) and an Inertial Navigation System (INS) are two basic navigation systems. Due to their complementary characters in many aspects, a GPS/INS integrated navigation system has been a hot research topic in the recent decade. The Micro Electrical Mechanical Sensors (MEMS) successfully solved the problems of price, size and weight with the traditional INS. Therefore...
متن کاملKalman Filtering with State Constraints: A Survey of Linear and Nonlinear Algorithms
The Kalman filter is the minimum-variance state estimator for linear dynamic systems with Gaussian noise. Even if the noise is non-Gaussian, the Kalman filter is best linear estimator. For nonlinear systems it is not possible, in general, to derive the optimal state estimator in closed form, but various modifications of the Kalman filter can be used to estimate the state. These modifications in...
متن کاملConstrained Kalman filtering via density function truncation for turbofan engine health estimation
Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This...
متن کاملKalman Filtering with Equality and Inequality State Constraints
Both constrained and unconstrained optimization problems regularly appear in recursive tracking problems engineers currently address – however, constraints are rarely exploited for these applications. We define the Kalman Filter and discuss two different approaches to incorporating constraints. Each of these approaches are first applied to equality constraints and then extended to inequality co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008